Real-Time Epidemiology and Acute Care Need Monitoring and Forecasting for COVID-19 via Bayesian Sequential Monte Carlo-Leveraged Transmission Models

Real-Time Epidemiology and Acute Care Need Monitoring and Forecasting for COVID-19 via Bayesian Sequential Monte Carlo-Leveraged Transmission Models

IJERPH, Vol. 21, Pages 193: Real-Time Epidemiology and Acute Care Need Monitoring and Forecasting for COVID-19 via Bayesian Sequential Monte Carlo-Leveraged Transmission Models

International Journal of Environmental Research and Public Health doi: 10.3390/ijerph21020193

Xiaoyan Li
Vyom Patel
Lujie Duan
Jalen Mikuliak
Jenny Basran
Nathaniel D. Osgood

COVID-19 transmission models have conferred great value in informing public health understanding, planning, and response. However, the pandemic also demonstrated the infeasibility of basing public health decision-making on transmission models with pre-set assumptions. No matter how favourably evidenced when built, a model with fixed assumptions is challenged by numerous factors that are difficult to predict. Ongoing planning associated with rolling back and re-instituting measures, initiating surge planning, and issuing public health advisories can benefit from approaches that allow state estimates for transmission models to be continuously updated in light of unfolding time series. A model being continuously regrounded by empirical data in this way can provide a consistent, integrated depiction of the evolving underlying epidemiology and acute care demand, offer the ability to project forward such a depiction in a fashion suitable for triggering the deployment of acute care surge capacity or public health measures, and support quantitative evaluation of tradeoffs associated with prospective interventions in light of the latest estimates of the underlying epidemiology. We describe here the design, implementation, and multi-year daily use for public health and clinical support decision-making of a particle-filtered COVID-19 compartmental model, which served Canadian federal and provincial governments via regular reporting starting in June 2020. The use of the Bayesian sequential Monte Carlo algorithm of particle filtering allows the model to be regrounded daily and adapt to new trends within daily incoming data—including test volumes and positivity rates, endogenous and travel-related cases, hospital census and admissions flows, daily counts of dose-specific vaccinations administered, measured concentration of SARS-CoV-2 in wastewater, and mortality. Important model outputs include estimates (via sampling) of the count of undiagnosed infectives, the count of individuals at different stages of the natural history of frankly and pauci-symptomatic infection, the current force of infection, effective reproductive number, and current and cumulative infection prevalence. Following a brief description of the model design, we describe how the machine learning algorithm of particle filtering is used to continually reground estimates of the dynamic model state, support a probabilistic model projection of epidemiology and health system capacity utilization and service demand, and probabilistically evaluate tradeoffs between potential intervention scenarios. We further note aspects of model use in practice as an effective reporting tool in a manner that is parameterized by jurisdiction, including the support of a scripting pipeline that permits a fully automated reporting pipeline other than security-restricted new data retrieval, including automated model deployment, data validity checks, and automatic post-scenario scripting and reporting. As demonstrated by this multi-year deployment of the Bayesian machine learning algorithm of particle filtering to provide industrial-strength reporting to inform public health decision-making across Canada, such methods offer strong support for evidence-based public health decision-making informed by ever-current articulated transmission models whose probabilistic state and parameter estimates are continually regrounded by diverse data streams.

Disasters Expo USA, is proud to be supported by Inergency for their next upcoming edition on March 6th & 7th 2024!

The leading event mitigating the world’s most costly disasters is returning to the Miami Beach

Convention Center and we want you to join us at the industry’s central platform for emergency management professionals.
Disasters Expo USA is proud to provide a central platform for the industry to connect and
engage with the industry’s leading professionals to better prepare, protect, prevent, respond
and recover from the disasters of today.
Hosting a dedicated platform for the convergence of disaster risk reduction, the keynote line up for Disasters Expo USA 2024 will provide an insight into successful case studies and
programs to accurately prepare for disasters. Featuring sessions from the likes of The Federal Emergency Management Agency,
NASA, The National Aeronautics and Space Administration, NOAA, The National Oceanic and Atmospheric Administration, TSA and several more this event is certainly providing you with the knowledge
required to prepare, respond and recover to disasters.
With over 50 hours worth of unmissable content, exciting new features such as their Disaster
Resilience Roundtable, Emergency Response Live, an Immersive Hurricane Simulation and
much more over just two days, you are guaranteed to gain an all-encompassing insight into
the industry to tackle the challenges of disasters.
By uniting global disaster risk management experts, well experienced emergency
responders and the leading innovators from the world, the event is the hub of the solutions
that provide attendees with tools that they can use to protect the communities and mitigate
the damage from disasters.
Tickets for the event are $119, but we have been given the promo code: HUGI100 that will
enable you to attend the event for FREE!

So don’t miss out and register today:

And in case you missed it, here is our ultimate road trip playlist is the perfect mix of podcasts, and hidden gems that will keep you energized for the entire journey


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More