Study on Numerical Simulation of Reactive-Transport of Groundwater Pollutants Caused by Acid Leaching of Uranium: A Case Study in Bayan-Uul Area, Northern China

2
Study on Numerical Simulation of Reactive-Transport of Groundwater Pollutants Caused by Acid Leaching of Uranium: A Case Study in Bayan-Uul Area, Northern China


Abstract

Acid in situ leaching (ISL) is a common approach to the recovery of uranium in the subsurface. In acid ISL, there are numerous of chemical reactions among the injected sulfuric acid, groundwater, and porous media containing ore layers. A substantial amount of radioactive elements including U, Ra, Rn, as well as conventional elements like K, Na, and Ca, and trace elements such as As, Cd, and Pb, are released into the groundwater. Thus, in acid ISL, understanding the transport and reactions of these substances and managing pollution control is crucial. In this study, a three-dimensional reactive transport modeling (RTM) using TOUGHREACT was built to investigate the dynamic reactive migration process of UO22+, H+, and SO42− at a typical uranium mine of Bayan-Uul. The model considering the partial penetration through wellbore in confined aquifer and complex chemical reactions among main minerals like uranium, K-feldspar, calcite, dolomite, anhydrite, gypsum, iron minerals, clay minerals, and other secondary minerals. The results show that after mining for one year, from the injection well to the extraction well, the spatial distribution of uranium volume fraction does not consistently increase or decrease, but it decreases initially and then increases. After mining for one year, the concentration front of UO22+ is about 20 m outside the mining area, the high concentration zone is mainly inside the mining area. The concentration front of H+ is no more than 50 m. SO42− is the index with the highest concentration among the three indexes, the concentration front of SO42− is no more than 100 m. The concentration breakthrough curve of the observation well 10 m from the mining area indicates that the concentrations of the three indicators began to significantly rise approximately after mining 0.05 years, reached the maximum value after mining 0.08 to 0.1 years, and then stabilized. The parameter sensitivity of absolute permeability and specific surface area of minerals shows that the concentration of H+ and SO42− is positively correlated with absolute permeability. The concentration of H+ is negatively correlated with the specific surface area of calcite, anhydrite, K-feldspar, gypsum, hematite, and dolomite. The concentration of SO42− is positively correlated with the specific surface area of K-feldspar and Hematite, and negatively correlated with the specific surface area of calcite, anhydrite, gypsum, and dolomite. The influence analysis of pumping ratio and non-uniform injection ratio shows that the non-uniform injection scheme has a more significant impact on pollution control. The water table, streamline, capture envelope, and the concentration breakthrough curve of five schemes with different pumping ratios and non-uniform injection ratio were obtained. The water table characteristics of five schemes shown that increase in the pumping ratio and the non-uniform injection ratio, the water table convex near the outer injection well is weakened and the groundwater depression cone near the pumping well is strengthened. This characteristic of water table exerts a notable retarding influence on the migration of pollutants from the mining area to the outside. For the scheme with a pumping ratio is 0 (the total pumping flow rate is equal to the total injection flow rate) and a non-uniform injection ratio is 0 (the flow rate of inner injection well Q1,Q2,Q3 is equal to the flow rate of outer injection well Q4,Q5,Q6), the streamline characteristics shown that a segment of the streamline of is diverging from inner region to the outer region. For other schemes, the streamline exhibits a convergent feature. It is indicated that by increasing the pumping ratio and non-uniform injection ratio, a closure flow field can be established, confining the groundwater pollutants resulting from mining within the capture envelope. Hence, the best scheme for preventing pollution migration is the scheme with a pumping ratio is 0 (the total pumping flow rate is equal to the total injection flow rate) and a non-uniform injection ratio is 0.1 (the flow rate of inner injection well Q1,Q2,Q3 is 10% more than the flow rate of outer injection well Q4,Q5,Q6). In this scheme, the optimal stable concentration of UO22+, H+, and SO42− at the observation well obtained by RTM is lower than other schemes, and the values are 0.00316 mol/kg, 2.792 (pH), and 0.0952 mol/kg. The inner well injection rate is 194.09 m3/d, the outer well injection rate is 158.89 m3/d, and the pumping rate is 264.00 m3/d. Numerical simulation analysis suggests that a scheme with a larger non-uniform injection ratio is more conducive to the formation of a strong hydraulic capture zone, thereby controlling the migration of pollutants in the acid ISL. A reasonable suggestion is to adopt non-uniform injection mining mode in acid ISL.


Disasters Expo USA, is proud to be supported by Inergency for their next upcoming edition on March 6th & 7th 2024!

The leading event mitigating the world’s most costly disasters is returning to the Miami Beach

Convention Center and we want you to join us at the industry’s central platform for emergency management professionals.
Disasters Expo USA is proud to provide a central platform for the industry to connect and
engage with the industry’s leading professionals to better prepare, protect, prevent, respond
and recover from the disasters of today.
Hosting a dedicated platform for the convergence of disaster risk reduction, the keynote line up for Disasters Expo USA 2024 will provide an insight into successful case studies and
programs to accurately prepare for disasters. Featuring sessions from the likes of The Federal Emergency Management Agency,
NASA, The National Aeronautics and Space Administration, NOAA, The National Oceanic and Atmospheric Administration, TSA and several more this event is certainly providing you with the knowledge
required to prepare, respond and recover to disasters.
With over 50 hours worth of unmissable content, exciting new features such as their Disaster
Resilience Roundtable, Emergency Response Live, an Immersive Hurricane Simulation and
much more over just two days, you are guaranteed to gain an all-encompassing insight into
the industry to tackle the challenges of disasters.
By uniting global disaster risk management experts, well experienced emergency
responders and the leading innovators from the world, the event is the hub of the solutions
that provide attendees with tools that they can use to protect the communities and mitigate
the damage from disasters.
Tickets for the event are $119, but we have been given the promo code: HUGI100 that will
enable you to attend the event for FREE!

So don’t miss out and register today: https://shorturl.at/aikrW

And in case you missed it, here is our ultimate road trip playlist is the perfect mix of podcasts, and hidden gems that will keep you energized for the entire journey

-

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More