Surrogate Optimal Fractional Control for Constrained Operational Service of UAV Systems

[ad_1]

Author Contributions

Conceptualization, A.M.M. and M.B.A.; methodology, A.M.M., M.B.A. and K.M.M.; software, A.M.M., M.B.A. and K.M.M.; validation, A.M.M. and M.B.A.; investigation, M.M. (Mohammed Moness) and M.M. (Moataz Mohamed); resources, M.M. (Mohammed Moness) and M.M. (Moataz Mohamed); writing—original draft preparation, K.M.M.; writing—review and editing, A.M.M., M.B.A. and M.M. (Moataz Mohamed); supervision, M.M. (Mohammed Moness) and M.M. (Moataz Mohamed). All authors have read and agreed to the published version of the manuscript.

Figure 1.
Challenge complexity of intersecting decision levels and constraints of UAV operation.

Figure 1.
Challenge complexity of intersecting decision levels and constraints of UAV operation.

Drones 08 00141 g001

Figure 2.
Design optimization criterion with its reflection in a set of operational requirements.

Figure 2.
Design optimization criterion with its reflection in a set of operational requirements.

Drones 08 00141 g002

Figure 3.
Frequency responses for a sample of FOPID with unity gains.

Figure 3.
Frequency responses for a sample of FOPID with unity gains.

Drones 08 00141 g003

Figure 4.
The quadrotor model frames.

Figure 4.
The quadrotor model frames.

Drones 08 00141 g004

Figure 5.
The quadrotor waypoint navigation FOPID control structure.

Figure 5.
The quadrotor waypoint navigation FOPID control structure.

Drones 08 00141 g005

Figure 6.
The twin-rotor copter physical setup.

Figure 6.
The twin-rotor copter physical setup.

Drones 08 00141 g006

Figure 7.
The twin-rotor copter cross-coupled FOPID control.

Figure 7.
The twin-rotor copter cross-coupled FOPID control.

Drones 08 00141 g007

Figure 8.
Stability boundaries in the K I K D plane for arbitrarily selected values of K P , λ , μ .

Figure 8.
Stability boundaries in the K I K D plane for arbitrarily selected values of K P , λ , μ .

Drones 08 00141 g008

Figure 9.
Flowchart of the surrogate optimization algorithm.

Figure 9.
Flowchart of the surrogate optimization algorithm.

Drones 08 00141 g009

Figure 10.
Conceptual plot of the surrogate optimization algorithm.

Figure 10.
Conceptual plot of the surrogate optimization algorithm.

Drones 08 00141 g010

Figure 11.
Position step responses for the quadrotor.

Figure 11.
Position step responses for the quadrotor.

Drones 08 00141 g011

Figure 12.
Simulation of the mission scenario for the quadrotor.

Figure 12.
Simulation of the mission scenario for the quadrotor.

Drones 08 00141 g012

Figure 13.
Zoomed 2D planar view for the quadrotor mission trajectory at transitional regions (A, B, and C).

Figure 13.
Zoomed 2D planar view for the quadrotor mission trajectory at transitional regions (A, B, and C).

Drones 08 00141 g013

Figure 14.
Zoomed 2D planar view for the quadrotor mission trajectory at transitional regions (D, E, and F).

Figure 14.
Zoomed 2D planar view for the quadrotor mission trajectory at transitional regions (D, E, and F).

Drones 08 00141 g014

Figure 15.
Histogram of control actions for the quadrotor.

Figure 15.
Histogram of control actions for the quadrotor.

Drones 08 00141 g015aDrones 08 00141 g015b

Figure 16.
Acceleration power spectral density for the quadrotor mission.

Figure 16.
Acceleration power spectral density for the quadrotor mission.

Drones 08 00141 g016aDrones 08 00141 g016b

Figure 17.
Visualization of the optimal FOPID controllers for the twin-rotor copter.

Figure 17.
Visualization of the optimal FOPID controllers for the twin-rotor copter.

Drones 08 00141 g017

Figure 18.
Convergence of surrogate optimization for the FOPID controllers of the twin-rotor copter.

Figure 18.
Convergence of surrogate optimization for the FOPID controllers of the twin-rotor copter.

Drones 08 00141 g018aDrones 08 00141 g018b

Figure 19.
Real-time orientation step responses for the twin-rotor copter.

Figure 19.
Real-time orientation step responses for the twin-rotor copter.

Drones 08 00141 g019

Figure 20.
Real-timecontrol actions of the step commands for the twin-rotor copter.

Figure 20.
Real-timecontrol actions of the step commands for the twin-rotor copter.

Drones 08 00141 g020

Figure 21.
Real-time orientation sinusoidal responses for the twin-rotor copter.

Figure 21.
Real-time orientation sinusoidal responses for the twin-rotor copter.

Drones 08 00141 g021

Figure 22.
Real-time control actions of the sinusoidal commands for the twin-rotor copter.

Figure 22.
Real-time control actions of the sinusoidal commands for the twin-rotor copter.

Drones 08 00141 g022

Figure 23.
Real-time orientation sawtooth responses for the twin-rotor copter.

Figure 23.
Real-time orientation sawtooth responses for the twin-rotor copter.

Drones 08 00141 g023

Figure 24.
Real-time control actions of the sawtooth commands for the twin-rotor copter.

Figure 24.
Real-time control actions of the sawtooth commands for the twin-rotor copter.

Drones 08 00141 g024
Table 1.
The quadrotor model parameters [67].
Table 1.
The quadrotor model parameters [67].
Parameter Value
K P , θ (s−2) 3402.97
K D , θ (s−1) 116.67
K P , ϕ (s−2) 3402.97
K D , ϕ (s−1) 116.67
K P , ψ (s−1) 1950
K t h (s−1) 3900
m (kg) 0.1

Table 2.
Statistical measures of the quadrotor controller optimization.

Table 2.
Statistical measures of the quadrotor controller optimization.

Axis Controller Objective Function Computation Time (min)
Min. Value Mean Median Standard
Deviation
Average
Simulations
Count
Mean Median Standard
Deviation
x PID-GA 664.2483 665.0124 664.3411 1.1576 2450 14.0791 14.0254 1.4368
FOPID-GA 672.5661 679.6325 678.4195 6.8963 2517 26.3810 26.3464 3.1829
FOPID-Surrogate 672.0003 683.4908 680.4865 8.3657 1000 11.1183 10.9377 0.5672
y PID-GA 664.2483 665.0124 664.3411 1.1576 2450 7.0880 7.0214 0.9581
FOPID-GA 673.3710 680.4129 676.7823 8.0841 2497 21.9964 20.4116 4.2519
FOPID-Surrogate 677.0695 682.9058 681.5786 5.5742 1000 10.4262 10.0240 0.7907
z PID-GA 274.7040 274.7089 274.7041 0.0125 2450 9.5922 9.3179 1.4732
FOPID-GA 286.9981 289.5838 288.8558 3.1095 2450 25.4097 23.9121 5.1696
FOPID-Surrogate 287.9273 289.4379 289.1571 1.2448 1000 19.3086 19.3221 1.0178

Table 3.
PID and FOPID gains for the quadrotor controllers.

Table 3.
PID and FOPID gains for the quadrotor controllers.

Axis Controller K P K I λ K D μ
x PID-GA 0.4598 0 1 0.3061 1
FOPID-GA 0.0696 0.0089 0.9053 0.2196 0.7202
FOPID-Surrogate 0 0.0205 0.6440 0.2480 0.6292
y PID-GA 0.4598 0 1 0.3061 1
FOPID-GA 0.0574 0.0244 0.5658 0.2389 0.7197
FOPID-Surrogate 0.0376 0.0544 0.4275 0.2375 0.7272
z PID-GA 8.6983 5.8476 1 1.3159 1
FOPID-GA 0.7844 7.6204 0.8063 2.1821 0.6411
FOPID-Surrogate 0.6607 7.9986 0.7507 2.2529 0.6387

Table 4.
Time-domain characteristics for quadrotor step responses.

Table 4.
Time-domain characteristics for quadrotor step responses.

Axis Controller Rise Time (s) Overshoot Settling Time (s) Settling Error
x PID-GA 0.9164 4.5587 2.6726 1.5332  × 10 7
FOPID-GA 0.7591 13.7547 2.9700 0.0177
FOPID-Surrogate 0.6958 17.7479 3.0561 0.0161
y PID-GA 0.9164 4.5587 2.6726 1.5332  × 10 7
FOPID-GA 0.7444 13.0912 2.9666 0.0131
FOPID-Surrogate 0.7329 16.4277 3.4230 0.0101
z PID-GA 0.2402 4.3196 0.6700 3.1186  × 10 8
FOPID-GA 0.2283 4.3987 0.6157 0.0042
FOPID-Surrogate 0.2163 6.4502 0.6352 0.0059

Table 5.
Statistical measures of the twin-rotor copter controller optimization.

Table 5.
Statistical measures of the twin-rotor copter controller optimization.

Controller Objective Function Computation Time (min)
Minimum Value Mean Standard Deviation Mean Standard Deviation
F P I D m θ 184.8821 207.2058 26.6892 9.8651 0.2540
F P I D m ψ 4.9927 5.4286 0.3315 14.2360 0.6657
F P I D t θ 0.6314 0.7114 0.0508 15.1317 0.3795
F P I D t ψ 21.2900 23.3846 1.5300 10.2655 1.1018

Table 6.
FOPID gains for the twin-rotor copter controller.

Table 6.
FOPID gains for the twin-rotor copter controller.

Controller K P K I λ K D μ
F P I D m θ 10.6718 2.8072 0.7189 11.1744 3.5408 × 10 4
F P I D m ψ 0.0433 0.8524 0.5716 0.2683 0.4986
F P I D t θ 0.4207 0.4692 0.5032 0.4454 0.5111
F P I D t ψ 0.8572 0.4179 0.6026 1.9416 0.9928

[ad_2]

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More