Agronomy | Free Full-Text | Deep Learning-Based Weed–Crop Recognition for Smart Agricultural Equipment: A Review

[ad_1]

This is an early access version, the complete PDF, HTML, and XML versions will be available soon.

Review

by
and

*

College of Engineering, China Agricultural University, Beijing 100083, China

*

Author to whom correspondence should be addressed.

Agronomy 2024, 14(2), 363; https://doi.org/10.3390/agronomy14020363 (registering DOI)

Submission received: 27 December 2023
/
Revised: 24 January 2024
/
Accepted: 7 February 2024
/
Published: 11 February 2024

Abstract

Weeds and crops engage in a relentless battle for the same resources, leading to potential reductions in crop yields and increased agricultural costs. Traditional methods of weed control, such as heavy herbicide use, come with the drawback of promoting weed resistance and environmental pollution. As the demand for pollution-free and organic agricultural products rises, there is a pressing need for innovative solutions. The emergence of smart agricultural equipment, including intelligent robots, unmanned aerial vehicles and satellite technology, proves to be pivotal in addressing weed-related challenges. The effectiveness of smart agricultural equipment, however, hinges on accurate detection, a task influenced by various factors, like growth stages, environmental conditions and shading. To achieve precise crop identification, it is essential to employ suitable sensors and optimized algorithms. Deep learning plays a crucial role in enhancing weed recognition accuracy. This advancement enables targeted actions such as minimal pesticide spraying or precise laser excision of weeds, effectively reducing the overall cost of agricultural production. This paper provides a thorough overview of the application of deep learning for crop and weed recognition in smart agricultural equipment. Starting with an overview of intelligent agricultural tools, sensors and identification algorithms, the discussion delves into instructive examples, showcasing the technology’s prowess in distinguishing between weeds and crops. The narrative highlights recent breakthroughs in automated technologies for precision plant identification while acknowledging existing challenges and proposing prospects. By marrying cutting-edge technology with sustainable agricultural practices, the adoption of intelligent equipment presents a promising path toward efficient and eco-friendly weed management in modern agriculture.

Share and Cite

MDPI and ACS Style

Qu, H.-R.; Su, W.-H.
Deep Learning-Based Weed–Crop Recognition for Smart Agricultural Equipment: A Review. Agronomy 2024, 14, 363.
https://doi.org/10.3390/agronomy14020363

AMA Style

Qu H-R, Su W-H.
Deep Learning-Based Weed–Crop Recognition for Smart Agricultural Equipment: A Review. Agronomy. 2024; 14(2):363.
https://doi.org/10.3390/agronomy14020363

Chicago/Turabian Style

Qu, Hao-Ran, and Wen-Hao Su.
2024. “Deep Learning-Based Weed–Crop Recognition for Smart Agricultural Equipment: A Review” Agronomy 14, no. 2: 363.
https://doi.org/10.3390/agronomy14020363

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Article metric data becomes available approximately 24 hours after publication online.

[ad_2]

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More